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Abstract—The equations that govern the current distribution in the
finite-thickness conductor of a microstrip structure are developed in a
rigorous manner. It is shown that the cross-sectional variation of the
current density is independent of the field variation along the axis of the
microstrip line only for the case when the displacement current in the
conductor is negligible compared to the conduction current, a condition
easily fultilled for most practical applications, and the line is operated in
the qnasi-TEM mode. The validlty of various methods proposed re-
cently for conductor loss calculations is dkcussed on the basis of this
analysis.

I. INTRODUCTION

RECENTLY, several methods have been proposed for the
calculation of the current distribution over the conductor

cross sections in microstrip structures, in order to predict more
accurately the associated conductor losses [1] – [6]. Such analyses
have been prompted by recent applications of microstrip lines in
MMIC’S and high speed digital VLSI/ULSI interconnections.
Indeed, the conductor dimensions and frequencies of interest in
these technologies are such that Wheeler’s incremental induc-
tance rule [7] no longer applies, and knowledge of the actual
current distribution is required for the accurate evaluation of the
frequency-dependent series resistance of the line.

Several of the proposed methods used for the prediction of
microstrip current distributions involve two key assumptions
[1] -[5]. The first one is that the transverse components of the
current can be neglected compared to the longitudinal compo-
nent in the calculation of the attenuation constant and other
transmission line parameters. The second is that the exp ( –jlcz z)
dependence of the fields along the axis of the rnicrostrip struc-
ture, taken to be parallel to the z axis of the cartesian coordinate
system, can be ignored in calculating the current distribution
over the cross sections of the Conductors. While the first assump-
tion is a valid one for microstrip lines with cross-sectional
dimensions small compared to the wavelength of interest, the
second one does not seem to have a concrete theoretical justifi-
cation [5]. Thk note attempts to provide such a justification. s

First, Maxwell’s equations with electric and magnetic fields
exhibiting an exp ( –jkz z) dependence are used to develop a
reduced set of equations for the transverse field variation over
the conductor cross section of a microstrip line. These equations
are then used to derive the conditions under which the cross-sec-
tional variation of the current density inside the conductors can
be obtained independently of the z dependence of the fields.
Finally, the validity of the various methods proposed recently
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for the prediction of the current distribution in the conductors is
examined in light of this analysis.

II. MATHEMATICAL FORMULATION

Let kz be the complex propagation constant for a microstrip
structure of constant cross section, having its axis parallel to the
z axis of a cartesian coordinate system. For wave propagation in
the positive z axis, the ~ybrid-mode fields of the microstrip have
the form

E(x, y, Z) = (et(x, y) + feZ(x, y)) exp (-jkzz), (1)

EI(x, y, z) = (hf(x, y) + fhz(x, y))exp (-jkzz), (2)

where et, h ~ denote the transverse part of the fields, and the exp
(jut) time dependence has been suppressed. The objective is to
obtain from the general Maxwell’s equations a reduced set of
equations that govern the cross-sectional variation of the fields
inside the conductors of the microstrip line for frequencies such
that the displacement current is negligible compared to the
conduction current. For such frequencies, u % u em, where G is
the conductivity, and the permittivity em of the conductor is
roughly the same as that for free space. In addition, V “ E = O
inside the conductor, and electric charge can occur only on the
surface of the conductor. This point has been discussed in more
detail in [8]. Substitution of (1) and (2) in Maxwell’s curl
equations, with the displacement current term neglected, yields

Vtx et = –jwphz?, (3)

–jkz?x et+Vtez x i? = –jovhf, (4)

Vtxht = oezi, (5)

–jkz2xht+Vthzx2 = act, (6)

where Vt = ;8 / 8 x + pa/8 y. Cross-multiplying (6) by i and
substituting in (4) one gets

() k;
Vtez x .2 = –jup 1 – j— ht + js Vfhz. (7)

upv u

With the assumption that the cross-sectional dimensions of the
line are small compared to the wavelength of interest, the
longitudinal component of the current is the dominant one.
Thus, et is negligible compared to ez, and (5) and (7) are easily
identified as the ones governing the electromagnetic field behav-
ior inside the conductors. With kz written in terms of its real
part 6 (phase constant) and imaginary part a (attenuation con-
stant), /cz = –JCY+ p, (7) takes the form
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Equation (8) can be simplified even further by recognizing that
the assumption that displacement effects inside the conductors
are negligible compared to the conduction effects can be ex-
pressed quantitatively as u & tie,e, where eeK is the effective
dielectric constant for the microstrip structure, defined through
the relation 62 = co2~eefl. Obviously, this condition is satisfied
for most practical applications of microstrip structures. This
inequality can also be written in the form COIM> f?2. This, then,
along with the obvious inequality CY< 6, shows that the term in
brackets in (8) can be set to 1 for the frequencies of interest, and
(8) takes the simpler form

(9)

Actually, the propagation constant can be eliminated from (9) by
invoking the relation V . H = Ofor the homogeneous conductor.
However, this is not required for the following development.
Equations (5) and (9) can be combined to derive the equation for
ez inside the conductor. Taking the curl of (9) and using (5) it is
straightforward to show that ez( x, y) satisfies

V~eZ = jwpaez. (lo)

III. DISCUSSION

It is apparent that (10) is independent of the propagation
constant kz. Its solution inside the conductor requires the
knowledge of either ez or its normal derivative on the periphery
of the conductor cross-section. Once the equation is solved, the
current distribution inside the conductors and the associated
conductor losses can be estimated. Obviously, the boundary
values of ez or its normal derivative on the periphery of the
conductor are dependent on the physics of the fields in the
exterior. It is now apparent that, under the assumptions made
thus far, the exp ( –jkz z) dependence of the fields can affect the
distribution of the current density over the conductor cross-sec-
tion only through these boundary values of either ez or its
normal derivative.

At this point, it is appropriate to distinguish between quasi-
TEM, and non-TEM conditions. Under quasi-TEM conditions,
the exterior electric and magnetic fields are approximately trans-
verse to the direction of propagation and are calculated from the
solution of an electrostatic and a magnetostatic problem, respec-
tively. The appropriate boundary condition for the solution of
(10) inside the conductors is then the normal derivative of ez on
the conductor boundary which is proportional to the tangential
component of hf. Since h ~ is obtained from the solution of a
magnetostatic problem, its value is independent of the dielectric
properties of the exterior region. Under these conditions, the
methods used in [1]– [5] for conductor loss crdculations are well
justified and yield very accurate results. The only concern one
might have is whether a sizable axial electric field component in
a high-loss line may invalidate the quasi-TEM mode approxima-
tion. However, the analysis in [8] shows that the ratio
I ez I/ I e, I is small enough even for high-loss lines and the
quasi-TEM mode assumption remains valid. At this point, it is
appropriate to recall that quasi-TEM conditions hold for fre-
quencies such that the cross-sectional dimensions of the line are
small compared to the wavelength in the dielectric medium.

At higher frequencies, where the quasi-TEM’ conditions are
violated due to geometric dispersion, (10) will still hold for as

long as u > a ~eti. Assuming that the longitudinal current is still
the main source of conductor loss, a rigorous solution to the
problem will require solution of (10) in the interior of the
conductors, solution of Maxwell’s equations in the exterior, and
coupling of the two solutions through boundary conditions at the
conductor boundaries. For such cases, the tangential component
of h ~ on the conductor boundary depends on the propagation
constant, and the accuracy of the methods in [1]– [5] becomes
questionable. On the other hand, this rigorous eigenvalue prob-
lem can become computationally intensive, especially if multi-
layered microstrip structures with multiple layers of metalliza-
tion are involved. In addition, the nonrectangular shape of the
strip conductors, which tends to be the rule rather than the
exception in interconnection structures for high-speed, high-per-
formance, VLSI/ULSI systems, further complicates matters
since rigorous formulations like the one in [6] no longer apply.

However, if the conductor losses are small enough to be
considered as a perturbation, the following approximate proce-
dure may be used instead to predict the attenuation constant due
to conductor losses. First, the exterior problem is solved assum-
ing perfect conductors of finite thickness. This is an eigenvalue
problem and its solution provides the propagation constant ~ and
the attenuation constant a ~ due to any losses in the dielectric.
Both integral equation [9] and finite element methods [10] have
been presented for the solution of this eigenvalue problem for
microstrips with conductors of arbitrary cross sections. Losses
in the ground plane or other shielding boundaries can also be
accounted for through the use of a complex surface impedance
[11]. From the solution of this eigenvalue problem, the value of
the tangential h ~ along the periphery of the conductor is ob-
tained also. This, then, constitutes the necessary boundary con-
dition for the solution of (10) in the interior of the conductors
and the prediction of the current distribution and the per unit
length time-averaged ohmic loss PC. The associated attenuation
constant aC is then found as aC= PC/2 Pf, where P* is the
time-averaged power flow along the line.
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